Theoretical Investigations of the EPR Parameters for Three Tetragonal Centers in CsCl:Cr³⁺ Crystal

Wei-Dong Chen and Hui-Ning Dong

Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, P. R. China

Reprint requests to W.-D.C.; E-mail: cwd_ck@163.com

Z. Naturforsch. **58a**, 93 – 96 (2003); received November 25, 2002

The electron paramagnetic resonance parameters zero-field splitting D and g factors g_{\parallel} and g_{\perp} of three tetragonal centers in CsCl: Cr^{3+} crystal at room temperature have been investigated by a two-spin-orbit (S. O.)-coupling parameter model. In this model, the contributions arising from the S. O. coupling of the central d^3 ion and the ligands are included. For center III, the very small D of the $[\operatorname{CrCl}_6]^{3-}$ cluster may be due to the displacement ($\approx 0.506\,\text{Å}$) of the two substitutional Cl^- ions along the tetragonal (C_4) axis. For the centers I and II, the relatively larger D results from the contribution of two or one water molecules, i.e., corresponding to $[\operatorname{CrCl}_{6-n}(\operatorname{H}_2\operatorname{O})_n]^{n-3}$ with, n=2 or 1 along the C_4 axis, respectively. The reasonableness of the theoretical results is discussed.

Key words: Electron Paramagnetic Resonance (EPR); Crystal and Ligand-Field Theory; Cr³⁺; CsCl.

1. Introduction

Electron paramagnetic resonance (EPR) and optical studies [1,2] on CsCl:Cr³⁺ crystals at room temperature have shown that Cr³⁺ occupies an interstitial site in the plane of four Cl⁻ (see Fig. 4 of [1]), and that the two host Cs^+ along the [001] (or C_4) axis may be substituted by Cl⁻ ions or water molecules due to charge compensation, and so the local symmetry of Cr³⁺ is tetragonal. In fact three tetragonal Cr³⁺ centers, named I, II and III, were found in the EPR measurements [1]. For center III, the very small zero-field splitting D ($|D| \approx 25 \times 10^{-4} \text{ cm}^{-1}$) is attributed to an incorporated [CrCl₆]³⁻ cluster, as supported by the optical studies in Refs. [2-5]. In contrast, associated with the $[CrCl_{6-n}(H_2O)_n]^{n-3}$ cluster for n = 2 or 1, the relatively larger D is attributed to the center I ($|D| \approx$ $2170 \times 10^{-4} \text{ cm}^{-1}$ [1]) or II ($|D| \approx 1400 \times 10^{-4} \text{ cm}^{-1}$ [1]), respectively. However, until now no satisfactory theoretical analysis has been made on the above three centers. In this paper, the EPR parameters D, g_{\parallel} and g_{\perp} for the three tetragonal Cr3+ centers are reasonably explained based on a two-spin-orbit-coupling parameter model.

2. Theory and Calculation

For transition-metal $(3d^n)$ ions in crystals, theoretical investigations of the EPR parameters can be made

by using Macfarlane's high-order perturbation methods [6,7] when the S.O. coupling parameter of ligands is smaller than that of central metal ions. However for CsCl:Cr³⁺ crystal, where the S.O. coupling parameter $(\approx 587 \text{ cm}^{-1} \text{ [8]})$ of the ligands is much larger than that ($\approx 240 \text{ cm}^{-1}$ [9]) of the central Cr³⁺ ion, the contribution from S.O. coupling of the ligands cannot be neglected. So, in the study of the EPR parameters of the CsCl:Cr³⁺ crystal made in this paper the conventional perturbation formulas of D, g_{\parallel} and g_{\perp} for the 3d³ ion in tetragonal symmetry including only the contribution of the central d³ ion should be replaced by two-S.O.-parameter formulas containing the contributions from both the central 3d³ ion and that of the ligands. This point has been supported by some authors [10, 11].

For $3d^3$ ions in tetragonal symmetry, the two-S.O.-coupling parameter formulas of D, g_{\parallel} and g_{\perp} can be expressed as [12]

$$D = \frac{35}{9}D_{t}\zeta'^{2}[1/E_{1}^{2} - 1/E_{3}^{2}] - 35BD_{t}\zeta\zeta'/E_{2}E_{3}^{2},$$

$$g_{\parallel} = g_{s}\frac{8k'\zeta'}{3E_{1}} - \frac{2\zeta'}{9E_{1}^{2}}(2k'\zeta - k\zeta' + 2g_{s}\zeta')$$

$$+ \frac{4\zeta'^{2}}{9E_{3}^{2}}(k - 2g_{s}) - \frac{2\zeta^{2}}{3E_{2}^{2}}(k + g_{s})$$

 $0932-0784 \ / \ 03 \ / \ 0200-093 \ \$ \ 06.00 \ \textcircled{\textcircled{e}} \ 2003 \ \ Verlag \ der \ Zeitschrift \ f"ur \ Naturforschung, \ T"ubingen \ \cdot \ http://znaturforsch.com/reschung, \ T"ubingen \ \cdot \ http://znaturforschung, \ T"ubingen \ \cdot \ http://zn$

$$+ \frac{4k'\zeta'\zeta}{9E_{1}E_{3}} - \frac{4k'\zeta'\zeta}{3E_{1}E_{2}} + \frac{4k'\zeta'\zeta}{3E_{2}E_{3}} + \frac{140k'\zeta'D_{t}}{9E_{1}^{2}},$$

$$g_{\perp} = g_{\parallel} - 210k'\zeta'D_{t}/9E_{1}^{2}, \tag{1}$$

where

$$\zeta = N_{t}(\zeta_{d}^{0} + \lambda_{t}^{2}\zeta_{p}^{0}/2),$$

$$\zeta' = (N_{t}N_{e})^{1/2}(\zeta_{d}^{0} - \lambda_{t}\lambda_{e}^{2}\zeta_{p}^{0}/2),$$

$$k = N_{t}(1 + \lambda_{t}^{2}/2),$$

$$k' = (N_{t}N_{e})^{1/2}(1 - \lambda_{t}\lambda_{e}/2).$$
(2)

and $g_s(=2.0023)$ is the spin-only value. ζ_d^0 and ζ_p^0 are, respectively, the S.O. coupling parameters of the d electron of the central ion and that of the p electron of the ligand in free state. For CsCl:Cr³⁺ crystal under study, $\zeta_d^0 \approx 240 \text{ cm}^{-1}$ [9] and $\zeta_p^0 \approx 587 \text{ cm}^{-1}$ [8]. D_t is the tetragonal field parameter. E_i are the zero-order energy separations between the ground 4A_2 and the excited 4T_2 , $^2T_{2a}$, and $^2T_{2b}$ states [12]. N_γ and λ_γ are the normalization factor and the orbital mixing parameter, which can be obtained from the approximate relationship [12]

$$f_{\gamma} = N_{\gamma}^2 [1 + \lambda_{\gamma}^2 S_{\rm dp}^2(\gamma) - 2\lambda_{\gamma} S_{\rm dp}(\gamma)], \tag{3}$$

and the normalization relationship [12]

$$N_{\gamma}(1 - 2\lambda_{\gamma}S_{\rm dp}(\gamma) + \lambda_{\gamma}^2) = 1, \tag{4}$$

where $S_{dp}(\gamma)$ is the group overlap integral and f_{γ} [\approx $(B/B_0 + C/C_0)/2$] the ratio of the Racah parameters for an ion in a crystal to that in free state.

2.1. Center III

From the optical spectra of CsCl: Cr^{3+} crystals at room temperature [2], one can obtain the cubic field parameter Dq and the Racah parameters B and C for center III (or $[CrCl_6]^{3-}$ cluster):

$$D_{\rm q} \approx D_{\rm q} (Cl^-) \approx 1370 \, {\rm cm}^{-1},$$
 $B \approx 645 \, {\rm cm}^{-1}, C \approx 2920 \, {\rm cm}^{-1}.$ (5

According to the Racah parameters $B_0 \approx 920 \, \mathrm{cm}^{-1}$ and $C_0 \approx 3331 \, \mathrm{cm}^{-1}$ [9] for a free Cr^{3+} ion, we have $f_\gamma \approx 0.7899$.

By using the superposition model [14], the tetragonal field parameter for center III can be written as

$$D_{\rm t} \approx \frac{16}{21} \bar{A}_4({\rm Cl}^-)[(R_0/R_\perp)^{t_4} - (R_0/R_\parallel)^{t_4}],$$
 (6)

where R_{\parallel} and R_{\perp} are the Cr³⁺-Cl⁻ distances parallel and perpendicular to the C_4 axis, respectively. The reference bonding distance $R_0 \approx \bar{R} = (R_{\parallel} + 2R_{\perp})/3$. For the ionic crystal, similar to the point-charge model, we take the power law exponent $t_4 \approx 5$ [14, 15]. The intrinsic parameter $\bar{A}_4(Cl^-)$ for the hexachloro-complex can be obtained from the relationship \bar{A}_4 (Cl⁻) \approx (3/4) $D_{\rm q}$ [15]. For simplicity we consider R_{\perp} to be the sum of the ionic radii of Cr^{3+} ($r \approx 0.755 \text{ Å}$ [16]) and the coplanar Cl⁻ ($r \approx 1.81 \text{ Å [17]}$), i. e., $R_{\perp} \approx 2.565 \text{ Å}$. As for R_{\parallel} , if the two substitutional Cl⁻ ions occupy exactly the host Cs⁺ sites, the sum of the ionic radii of Cr³⁺ and the substitutional Cl⁻ is 2.565 Å, even larger than half of the lattice constant ($a \approx 4.11 \text{ Å [1]}$) of CsCl. So, the two substitutional Cl⁻ ions may be expected to be displaced away from the central interstitial Cr^{3+} ion by about an amount ΔZ due to the spacial size effect along the C_4 axis, in spite of the electrostatic attraction between the central Cr³⁺ and the two Cl^- along C_4 axis. By fitting the observed of D, we find that for center III

$$\Delta Z \approx 0.506 \,\text{Å} \quad \text{or} \quad R_{\parallel} \approx 2.561 \,\text{Å}.$$
 (7)

Thus, we have the average metal-ligand distance $\bar{R}=(R_{\parallel}+2R_{\perp})/3\approx 2.564$ Å. By using the Slater-type SCF function [18,19] and the value of \bar{R} , the group overlap integrals $S_{\rm dp}(t_{2g})\approx 0.01555$ and $S_{\rm dp}(e_g)\approx 0.05$ can be obtained, and the parameters N_{γ} and λ_{γ} can be also calculated. In consideration of the tetragonal field parameter $D_{\rm t}~(\approx -6.1~{\rm cm}^{-1})$, from (6), one may reasonably suggest that for center III the tetragonal distortion is very small, which also agrees with its experimental D value. The related theoretical D, g_{\parallel} and g_{\perp} are shown in Table 1.

2.2. Centers I and II

According to the larger values of centers I and II [1], and the superposition studies for the $[\operatorname{CrCl}_n(\operatorname{H}_2\operatorname{O})_{6-n}]^{3-n}$ and $[\operatorname{Mn}^{2+}\operatorname{Cl}_n(\operatorname{H}_2\operatorname{O})_{6-n}]^{2-n}$ clusters [20,21], molecular water contributes more to D than to the Cl^- ion. It can be shown that the centers I and II are clusters of $[\operatorname{CrCl}_{6-n}(\operatorname{H}_2\operatorname{O})_n]^{n-3}$ with n=2

	Center I [CrCl ₄ (H ₂ O) ₂] -			Center II [CrCl ₅ (H ₂ O)] ²⁻			Center III [CrCl ₆] ³⁻		
	D	g_{\parallel}	g_{\perp}	D	g_{\parallel}	g_{\perp}	D	g_{\parallel}	g_{\perp}
Cal.	-216	1.970	1.981	-110	1.973	1.979	-26	1.976	1.977
Expta	-217	1.970	1.982	-140	1.965	1.979	-25	1.982	1.981

^a The signs of *D* for the three tetragonal centers were not given in [1]. However, we can reasonably assume that for all the centers the sign of *D* is negative, based on the empirical relationship $D \approx \zeta (g_{\parallel} - g_{\perp}) / (6k)$ [23,24].

Table 1. EPR parameters D (in units of $10^{-4}~{\rm cm}^{-1}$), g_{\parallel} and g_{\perp} for the three tetragonal centers I, II and III in CsCl:Cr³⁺ crystal at room temperature.

and 1, respectively [1, 2]. Similar to (6), the tetragonal field parameter can be expressed as

$$D_{\rm t} \approx \frac{16}{21} [\bar{A}_4({\rm Cl}^-) - \bar{A}_4({\rm H_2O})]$$
 (8)

for center I and

$$D_{t} \approx \frac{8}{21} \left\{ \bar{A}_{4}(Cl^{-}) \left[2(R'_{0}/R'_{\perp})^{t4} - (R_{0}/R'_{\parallel})^{t4} \right] - \bar{A}_{4}(H_{2}O) \right\}$$
(9)

for center II.

In the above formulas, the reference bonding distance for center II can be written as $R_0\prime \approx (R_\parallel\prime + 4R_\perp\prime)/5$. Considering that the only difference between center III and center I (or II) arises from two (or one) water molecules substituting the host Cs⁺ ion(s) along the C₄ axis, the metal-ligand distances R_\parallel and R_\perp in center III can be approximately adopted for the center II (i. e., $R_\parallel\prime \approx R_\parallel$ and $R_\perp\prime \approx R_\perp$). The intrinsic parameter \bar{A}_4 (H₂O) equals about (3/4) D_q (H₂O) [15], with the cubic field splitting D_q (H₂O) (\approx 1740 cm⁻¹) for the [Cr(H₂O)₆]³⁺ cluster [22]. Since there are no optical spectra available for the centers I and II, we can reasonably take the mean cubic field parameters D_q (I) and D_q (II) for the centers I and II in terms of D_q in (5) for center III, i. e.,

$$D_{\mathbf{q}}(\mathbf{I}) \approx [2D\mathbf{q}(\mathbf{C}\mathbf{I}^{-}) + D\mathbf{q}(\mathbf{H}_{2}\mathbf{O})]/3,$$

$$Dq(II) \approx [5Dq(Cl^{-}) + Dq(H_2O)]/6$$
 (10)

For simplicity, the values B and C in (5) are approximately adopted for the centers I and II.

Since the S.O. coupling parameter of O^{2-} ($\zeta_p^0 \approx 150~cm^{-1}$ [22]) in molecular water is much smaller than that of Cl⁻, the contribution to the EPR parameters from the S.O. coupling parameter of molec-

[1] F.S. Stibbe and N.J. Trappenieers, Phys. B **95**, 81 (1978).

ular(s) water in centers I and II may be much smaller than that from the S.O. coupling parameter of Cl⁻ ligands and can be ignored. So, only the five and four Cl⁻ ions are included in the calculation of metal-ligand overlap for center I and II, respectively. Thus, we have the average group overlap integrals $S_{\rm dp}(t_{2g}) \approx 0.01293$ and $S_{\rm dp}(e_g) \approx 0.04158$ for the center I and $S_{\rm dp}(t_{2g}) \approx 0.01034$ and $S_{\rm dp}(e_g) \approx 0.03327$ for center II

By applying the above parameters in (1), the theoretical values of D, g_{\parallel} and g_{\perp} for centers I and II are calculated and shown in Table 1.

3. Results and Discussion

From Table 1, one finds that the calculated values of D, g_{\parallel} and g_{\perp} for the three centers agree reasonably with the observed data. By analyzing its EPR data, the local structure of center III is also determined, i.e., the two substitutional Cl⁻ ions do not occupy exactly the host Cs⁺ sites, but shift away from the central interstitial Cr³⁺ ion by about 0.506 Å due to the spacial size effect along the C4 axis. Thus, the little difference between R_{\parallel} and R_{\perp} (≈ 2.565 Å) and hence the very small $D_{\rm t}~(\approx -6.1~{\rm cm}^{-1})$ can be understood for the [CrCl₆]³⁻ cluster. Interestingly, if we still assume that the two substitutional Cl⁻ ions occupy exactly the host Cs⁺ sites ($\Delta Z = 0$, $R_{\parallel} \approx a/2 \approx 2.055$ Å, and so $\bar{R} \approx 2.395 \text{ Å}$), the calculated $D \approx 4680 \times 10^{-4} \text{ cm}^{-1}$ would be about 180 times larger than the experimental value.

Compared with center III, the relatively larger D values for centers I and II may be due to the larger tetragonal distortions arising from the substitution of Cl⁻ion(s) with molecular H₂O having a stronger crystal field [$Dq(H_2O) \approx 1740 \text{ cm}^{-1}$] than that [$Dq(Cl^-) \approx 1370 \text{ cm}^{-1}$] of the Cl⁻ ligand.

[2] N. J. Trappeniers and F. S. Stribbe, Phys. Stat. Sol. (b) 105, 243 (1981).

- [3] M. Musa, M. Lebl, M. Botez, and C. Lulea, Phys. Stat. Sol. (b) **43**, 563 (1971).
- [4] W. Pistor, Phys. Stat. Sol. 40, 581 (1970).
- [5] C. K. Jorgensen, Absorption Spectra and Chemical Bonding in Complexes, Addison Wesley, New York 1962.
- [6] R. M. Macfarlane, J. Chem. Phys. 47, 2066 (1967).
- [7] R. M. Macfarlane, Phys. Rev. B 1, 989 (1970).
- [8] G.L. McPherson, R.C. Kach, and G.D. Stucky, J. Chem. Phys. 60, 1424 (1974).
- [9] M. G. Zhao, J. A. Xu, G. R. Bai, and H. S. Xie, Phys. Rev. B 27, 1516 (1983).
- [10] M. L. Du and Cz. Rudowicz, Phys. Rev. B 46, 8974 (1992).
- [11] S. K. Misra and C. Z. Wang, Phys. Stat. Sol. (b) 154, 257 (1989).
- [12] S. Y. Wu and W. C. Zheng, Phys. B233, 84 (1997).
- [13] M. L. Du, Phys. Rev. B 46, 5274(1992).
- [14] D. J. Newman and B. Ng, Rep. Prog. Phys. 52, 699 (1989).

- [15] W. L. Yu and M. G. Zhao, Phys. Rev. B37, 9254 (1988).
- [16] R. D. Shannon, Acta Crystallogr A32, 751 (1976).
- [17] R. W. Wyckoff, Crystal Structures, Interscience, New York 1951.
- [18] E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963).
- [19] E. Clementi, D. L. Raimondi, and W. P. Reinhardi, J. Chem. Phys. 47, 1300 (1967).
- [20] G. Elbers, S. Remme, and G. Lehmann, Phys. Stat. Sol. (b) 142, 367 (1987).
- [21] A. Forman and J. A. Van Wyck, Canad. J. Phys. 45, 3381(1967).
- [22] C. E. Moore, Atomic Energy Level, (Natl. Bur. Std, U.S. 1949).
- [23] J. L. Patel, J. J. Davies, B. C. Cavenett, H. Takeuchi and K. Horai, J. Phys. C9, 129 (1976).
- [24] F. Mehran, M. W. Shafer, and G. V. S. Rao, Solid State Commun. 17, 1311 (1975).